27 research outputs found

    Exploiting Vestibular Output during Learning Results in Naturally Curved Reaching Trajectories

    Get PDF
    Teaching a humanoid robot to reach for a visual target is a complex problem in part because of the high dimensionality of the control space. In this paper, we demonstrate a biologically plausible simplification of the reaching process that replaces the degrees of freedom in the neck of the robot with sensory readings from a vestibular system. We show that this simplification introduces errors that are easily overcome by a standard learning algorithm. Furthermore, the errors that are necessarily introduced by this simplification result in reaching trajectories that are curved in the same way as human reaching trajectories

    CHINESE HERBAL MEDICINE AND PREDNISONE INCREASE PROPORTION OF SPLENIC CD4+CD25-FOXP3+ CELLS AND ALLEVIATE GLOMERULAR LESION IN MRL/LPR MICE

    Get PDF
    Objective: This study investigated the effects of Chinese herbal medicine and prednisone on CD4+FoxP3+ T cells (Tregs) and Th17 cells in the MRL/lpr mouse model of systemic lupus erythematosus. Methods: MRL/lpr mice were treated with herbal medicine (yin-nourishing and heat-clearing therapy), prednisone, and a combination of both for 7 weeks. The proportions of CD4+CD25+FoxP3+ cells, CD4+CD25-FoxP3+ cells, and CD4+IL-17+ cells in splenic mononuclear cell suspension were determined by flow cytometry. Histological slices of kidneys were stained by H&E, PAS, and Masson’s method. Activity indexes (AI) of glomerular lesions were scored. Results: The result showed that both herbal medicine and prednisone significantly increased the proportion of CD4+CD25-FoxP3+ cells (

    Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors

    No full text
    Tumor cells have an increased nutritional demand for amino acids (AAs) to satisfy their rapid proliferation. Positron-emitting nuclide labeled AAs are interesting probes and are of great importance for imaging tumors using positron emission tomography (PET). Carbon-11 and fluorine-18 labeled AAs include the [1-11C] AAs, labeling alpha-C- AAs, the branched-chain of AAs and N-substituted carbon-11 labeled AAs. These tracers target protein synthesis or amino acid (AA) transport, and their uptake mechanism mainly involves AA transport. AA PET tracers have been widely used in clinical settings to image brain tumors, neuroendocrine tumors, prostate cancer, breast cancer, non-small cell lung cancer (NSCLC) and hepatocellular carcinoma. This review focuses on the fundamental concepts and the uptake mechanism of AAs, AA PET tracers and their clinical applications

    Physiological profiles associated with ceasing growth of unfertilized eggs produced by unmated queens in the subterranean termite Reticulitermes chinensis

    No full text
    In Reticulitermes chinensis, a close relative of R. speratus with asexual queen succession, unfertilized eggs can be produced but do not hatch as larvae. To explain this phenomenon, we analyzed the physiological differences between unfertilized eggs/unmated queens and fertilized eggs/mated queens. Fertilized eggs had significantly lower quantities of five amino acids (Cys, Met, Ile, Leu and Tyr), Ca, protein and cholesterol during development. The higher levels of four trace elements (Na, K, Zn and Fe) in fertilized eggs and their lower levels in mated queens indicated that mated queens might transfer these trace elements to fertilized eggs to aid development. The higher levels of Mn, triglycerides and serotonin in mated queens and higher levels of Mn and glucose in fertilized eggs suggested that these substances are very important for normal ovarian and embryonic growth. The different expression of three reproductive genes (vtg 1, rab 11 and JHE 1) suggested that they might be involved in the regulation of ovarian and embryonic growth. Overall, changes in these physiological indices may substantially affect ovarian and embryonic growth and inhibit development of unfertilized eggs in R. chinensis
    corecore